Main Article Content

Abstract

Understanding differential comorbidity patterns for Type 2 Diabetes Mellitus (T2DM) across healthcare levels is crucial for targeted prevention strategies in tiered systems. In this cross-sectional study, we analyzed 2023 BPJS Kesehatan claims data to examine ICD-10-coded comorbidities associated with T2DM between basic primary care facilities (FKTP) and advanced referral care facilities (FKRTL), using weighted and unweighted odds ratios. Distinct patterns emerged reflecting both appropriate care distribution and coding artifacts. FKRTL showed the highest associations with specialized diagnostic: abnormal glucose tolerance (R73, OR: 41.089), unspecified diabetes (E12, OR: 53.023), and insulin-dependent diabetes (E10, OR: 33.807). FKTP demonstrated unexpected associations with conditions beyond its diagnostic capability, notably pulmonary embolism (I26; OR: 112.912), absent in FKRTL’s top 20, suggesting follow-up coding rather than primary diagnosis. Common diabetic complications appeared in both settings: retinopathy (FKTP: OR 44.145 vs FKRTL: OR 25.980) and polyneuropathy (FKTP: OR 25.807 vs FKRTL: OR 26.482), though FKTP lacks specialized diagnostic equipment. Findings reveal appropriate healthcare distribution where FKRTL handles specialized care, while complex diagnostic codes in FKTP likely reflect monitoring of conditions initially diagnosed at referral facilities. This highlights critical interpretation challenges in administrative claims data across tiered healthcare systems managing Indonesia’s millions of T2DM cases.

Keywords

Type 2 Diabetes Mellitus Primary Care Risk Factors Health Insurance Claims Indonesia

Article Details

How to Cite
Muhtar, M. S., Hafidh, K. A., Ningrum, D. N. A., & Hsu, M.-H. (2025). Comparative Analysis of Type 2 Diabetes Mellitus Association Patterns in Primary and Referral Care. Jurnal Jaminan Kesehatan Nasional, 5(2), 294–306. https://doi.org/10.53756/jjkn.v5i2.389

References

  1. Balcha, S. A., Phillips, D. I. W., & Trimble, E. R. (2018). Type 1 Diabetes in a Resource-Poor Setting: Malnutrition Related, Malnutrition Modified, or Just Diabetes? Current Diabetes Reports, 18(7). https://doi.org/10.1007/s11892-018-1003-7
  2. Clark, K. K., Gutierrez, J., Cody, J. R., & Padilla, B. I. (2024). Implementation of Diabetic Retinopathy Screening in Adult Patients With Type 2 Diabetes in a Primary Care Setting. Clinical Diabetes: A Publication of the American Diabetes Association, 42(2), 223–231. https://doi.org/10.2337/cd23-0032
  3. Faizi, M., Fadiana, G., Nadira, D., Angela, A., Puteri, H. A., & Pulungan, A. (2024). Pediatric Type 1 Diabetes Care in Indonesia: A Review of Current Challenges and Practice. Journal of Clinical Research in Pediatric Endocrinology. https://doi.org/10.4274/jcrpe.galenos.2024.2024-9-4
  4. Fauziyyah, A. N., Shibanuma, A., Ong, K. I. C., & Jimba, M. (2024). What are the factors affecting primary care choice when the access under health insurance scheme is limited?: A cross-sectional study in Bandung, Indonesia. BMC Primary Care, 25(1). https://doi.org/10.1186/s12875-024-02296-6
  5. Flood, D., Seiglie, J. A., Dunn, M., Tschida, S., Theilmann, M., Marcus, M. E., Brian, G., Norov, B., Mayige, M. T., Gurung, M. S., Aryal, K. K., Labadarios, D., Dorobantu, M., Silver, B. K., Bovet, P., Jorgensen, J. M. A., Guwatudde, D., Houehanou, C., Andall-Brereton, G., … Manne-Goehler, J. (2021). The state of diabetes treatment coverage in 55 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data in 680 102 adults. The Lancet Healthy Longevity, 2(6), e340–e351. https://doi.org/10.1016/s2666-7568(21)00089-1
  6. Hidayat, B., Ramadani, R. V., Rudijanto, A., Soewondo, P., Suastika, K., & Siu Ng, J. Y. (2022). Direct Medical Cost of Type 2 Diabetes Mellitus and Its Associated Complications in Indonesia. Value in Health Regional Issues, 28, 82–89. https://doi.org/10.1016/j.vhri.2021.04.006
  7. Huang, X., Wu, Y., Ni, Y., Xu, H., & He, Y. (2025). Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: Analysis from the global burden of disease study 2021. Frontiers in Public Health, 13. https://doi.org/10.3389/fpubh.2025.1515797
  8. Indonesia-International Diabetes Federation. (n.d.). Indonesia-International Diabetes Federation. Retrieved July 23, 2025, from https://idf.org/our-network/regions-and-members/western-pacific/members/indonesia/
  9. Lam, A. A., Lepe, A., Wild, S. H., & Jackson, C. (2021). Diabetes comorbidities in low- and middle-income countries: An umbrella review. Journal of Global Health, 11. https://doi.org/10.7189/jogh.11.04040
  10. Lipscombe, L. L., Hwee, J., Webster, L., Shah, B. R., Booth, G. L., & Tu, K. (2018). Identifying diabetes cases from administrative data: A population-based validation study. BMC Health Services Research, 18(1). https://doi.org/10.1186/s12913-018-3148-0
  11. Manne-Goehler, J., Geldsetzer, P., Agoudavi, K., Andall-Brereton, G., Aryal, K. K., Bicaba, B. W., Bovet, P., Brian, G., Dorobantu, M., Gathecha, G., Singh Gurung, M., Guwatudde, D., Msaidie, M., Houehanou, C., Houinato, D., Jorgensen, J. M. A., Kagaruki, G. B., Karki, K. B., Labadarios, D., … Jaacks, L. M. (2019). Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys. PLoS Medicine, 16(3), e1002751. https://doi.org/10.1371/journal.pmed.1002751
  12. Muharram, F. R., Swannjo, J. B., Melbiarta, R. R., & Martini, S. (2025). Trends of diabetes and pre-diabetes in Indonesia 2013–2023: A serial analysis of national health surveys. BMJ Open, 15(9), e098575. https://doi.org/10.1136/bmjopen-2024-098575
  13. Pan, J., Lee, S., Cheligeer, C., Li, B., Wu, G., Eastwood, C. A., Xu, Y., & Quan, H. (2025). Assessing the validity of ICD-10 administrative data in coding comorbidities. BMJ Health & Care Informatics, 32(1), e101381. https://doi.org/10.1136/bmjhci-2024-101381
  14. Sambodo, N. P., Bonfrer, I., Sparrow, R., Pradhan, M., & Van Doorslaer, E. (2023). Effects of performance-based capitation payment on the use of public primary health care services in Indonesia. Social Science & Medicine, 327, 115921. https://doi.org/10.1016/j.socscimed.2023.115921
  15. Setyaningtyas, R. C., & Ayuningtyas, D. (2025). Efforts to Improve Access to Primary Healthcare Services in Archipelagic Regions: A Literature Review. Indonesian Journal of Global Health Research, 7(1), 885–894. https://doi.org/10.37287/ijghr.v7i1.5307
  16. Siah, Q. Z., Ubeysekara, N. H., Taylor, P. N., Davies, S. J., Wong, F. S., Dayan, C. M., & Ali, M. A. (2021). Referral rates of patients with diabetes to secondary care are inversely related to the prevalence of diabetes in each primary care practice and confidence in treatment, not to HbA1c level. Primary Care Diabetes, 15(3), 513–517. https://doi.org/10.1016/j.pcd.2021.02.004
  17. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
  18. Van Weel, C., & Kidd, M. R. (2018). Why strengthening primary health care is essential to achieving universal health coverage. Canadian Medical Association Journal, 190(15), E463–E466. https://doi.org/10.1503/cmaj.170784
  19. Wahidin, M., Achadi, A., Besral, B., Kosen, S., Nadjib, M., Nurwahyuni, A., Ronoatmodjo, S., Rahajeng, E., Pane, M., & Kusuma, D. (2024). Projection of diabetes morbidity and mortality till 2045 in Indonesia based on risk factors and NCD prevention and control programs. Scientific Reports, 14(1), 5424. https://doi.org/10.1038/s41598-024-54563-2